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Abstract

Fluid motion around a bubble placed on a heated wall of a flowing liquid channel is studied under microgravity
condition, using a spectral element based two-dimensional numerical model. It is shown that the flow and temperature
fields around the bubble are governed by an interaction between thermocapillary and forced convection. An opposing
interaction between the two convection mechanisms creates a recirculation cell at the downstream side of the bubble.
Channel flow velocity, length of the heated wall before the bubble, and temperature difference between the heated wall
and the bulk liquid are shown to be the most important variables. Their effects on the bubble surface temperature,
surface velocity, stagnation point on the bubble surface, length of the recirculation cell along the heated wall, and wall

heat transfer near the bubble are investigated. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Two-phase gas liquid thermal control system has
been identified as a better alternative to single phase
pumped liquid loop [1] to meet the growing power de-
mand for spacecraft thermal management [2]. The main
advantage of a two-phase system lies in the large
amount of latent heat that is transferred during boiling
and condensation. Other space applications involving
gas-liquid flow are life support system [3], subcooled
boiling in cryogenic storage system, design of thermal
bus for the space station, gas-liquid separation process
in space, etc. [4]. In view of its widespread current and
potential future applications, the study of two-phase
flow, especially boiling, in a microgravity environment
continues to be an active area of research for many
years. Recent review articles have thrown light on the
state of understanding of the subject [5,6]. An important
fluid mechanics aspect of two-phase flow that has re-
ceived comparatively much less attention, is the study of
liquid motion in the vicinity of an individual bubble. A
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clear understanding of the flow and temperature fields in
the vicinity of a bubble is necessary as they govern the
forces acting on the bubble. The forces, in turn, control
bubble growth, detachment and consequently the re-
sulting two-phase flow and heat transfer.

In a gas-liquid system, heating or cooling of the
liquid container wall induces temperature gradients in
the liquid and thus along the free surface of the bubble
sticking to the wall. The induced temperature gradient
brings in density variation in the liquid, which, coupled
with gravity, creates a buoyancy force leading to a
natural convection current. In addition, the temperature
gradient along the bubble creates a local variation of
surface tension, which in turn causes liquid motion on
the surface. The surface motion is transmitted into the
bulk liquid due to viscosity, thus setting in thermocap-
illary convection. In the presence of gravity in a terres-
trial environment, buoyancy forces due to density
variation in the liquid and density difference between gas
and liquid tend to overwhelm all other forces. In con-
trast, under microgravity condition, with greatly re-
duced buoyancy, thermocapillary convection becomes
an important mode of fluid motion. Its importance in
materials processing and fluid management in space was
emphasized by Ostrach [7].
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Nomenclature

a bubble radius at wall, radius of gas
injection hole

Cp specific heat

Ca capillary number = u, Uy /0

h channel height

hy heat transfer coefficient at any x location

along heated wall

k thermal conductivity

L length of the heated wall before front end
corner of the bubble

Ma Marangoni number =R, Pr

Nu, Nusselt number at any x location =
healk

n*, dimensionless coordinates normal and
tangential to bubble surface =n,¢/a

P pressure (p) non-dimensionalized w.r.t ref.
pressure (Prer) = P/ Pret

Pr Prandtl number of liquid = y,cpe/ke

r* bubble radius (), non-dimensionalized
w.r.t a

R, surface tension Reynolds number =
Py Uref a/ e

Reyoe, Rep  Reynolds number, based on Uiy, a (= p,
ljloca/,u(/f) and Utoe; L (: péljlocL/.u/,)

T temperature

T* dimensionless temperature = (7 — Ty,) /AT

u velocity vector (u), non-dimensionalized
by Uref

u, dimensionless velocity normal and
tangential to bubble surface =u, /UL

u:’} dimensionless velocity in the x- and y-di-
rection, non-dimensionalized by U,,

Uy average channel (cross) flow velocity

U maximum channel flow velocity (U nax),

¢,max

non-dimensionalized by Ul

Uloe local channel (cross) flow velocity at
bubble height a = 6U,[(a/h) — (a/h)’]

User reference thermocapillary velocity = o

_ AT/,

vV velocity ratio = Urer/ Uloc

v bubble surface velocity (7;) non-dimen-
sionalized by Uyoc = V;/Uloe

Xy dimensionless x and y coordinate
non-dimensionalized by a

X3 length of recirculation cell along heated
wall =Xg/a

X! dimensionless X location of the stagnation
point =X /a

Yy dimensionless Y location of the stagnation
point=Y,/a

Greek symbols

or thermal boundary layer thickness at length
L

AT temperature difference between heated
wall and bulk liquid =T, — T,

u dynamic viscosity

a surface tension of liquid

oT linear coefficient of surface tension
variation due to temperature

p density

/0% minimum stream function (Y/,,;,)
non-dimensionalized by ¥,

Vit reference stream function = o1ATa/y,

Subscripts

g gas

4 liquid

m bulk liquid

max maximum

min minimum

] bubble surface

w wall

In pursuit of knowledge about liquid motion in the
vicinity of a bubble on a heated surface, research effort
was initiated more than two decades ago. However, lit-
erature still remains scarce in this area. Consequently,
even the rudimentary aspect of the problem is not yet
well-understood, especially in a microgravity environ-
ment. In all the work carried out so far, the bulk liquid is
considered to be stagnant initially. Larkin [8] carried out
the first numerical study of thermocapillary flow around
a hemispherical bubble placed on a solid wall subject to
constant heat flux. He observed that the liquid is pulled
towards the intersection of bubble and plate, then flows
around the bubble surface and leaves the bubble as a jet.
Kao and Kenning [9] extended the work of Larkin by
taking into consideration the heat transfer through the

bubble surface and the effect of gravity (natural con-
vection). Their study showed that the interfacial heat
transfer can be high in the case of a water—vapor system,
whereas for a gas bubble-liquid system it is negligibly
low. They observed that as the liquid jet penetrates into
the bulk liquid, it creates an unstable density gradient
within the liquid giving rise to a natural convection cell.
They further reported from experiment that thermo-
capillary flow is extremely sensitive to surface contami-
nation, especially for water. Raake et al. [10] conducted
a similar experimental investigation with air bubble and
silicone oil, which is insensitive to surface contamina-
tion. In their study of the liquid temperature and
velocity fields near the bubble, they observed an oscil-
latory instability in the flow at a high temperature dif-
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ference between the hot wall and bulk fluid. Their work
was later extended to a higher temperature difference
regime to observe steady, transitional and different
modes of oscillatory motion [11,12]. Straub [13] also
reported an experimental study of the phenomena using
liquid-vapor systems of methanol, propanol, ethanol,
R113 and water. The first reduced-gravity experiment on
this subject was performed by Wozniak et al. [14]. In
their ground-based experiment, they identified a co-
existing mechanism of natural and thermocapillary
convection governing the flow and temperature fields. In
contrast, in the reduced-gravity environment of a
sounding rocket, thermocapillary convection was
observed to be the only transport mechanism. These
experimental observations [12,14] were supplemented by
numerical analysis, recently carried out by Kassemi and
Rashidnia [15]. In all these previous works, the bulk
liquid is considered to be quiescent initially, which re-
sembles pool boiling.

Recent studies on pool boiling [16], forced convection
boiling [17] and bubble formation in flowing liquid
[18,19] under microgravity condition suggest the
necessity of bulk liquid motion. With greatly reduced
buoyancy in space, forces due to bulk liquid flow ensure
a timely detachment of the bubble from the wall and
thus control the bubble size. To improve the control
aspect further, investigation is required to know if wall
heating can be applied to alter the flow field around the
bubble and the forces acting on it. Thereby, a combi-
nation of bulk liquid flow and wall heating can be uti-
lized for the control purpose. Thus, it is important to
understand the fluid motion near a bubble on a heated
wall of a flowing liquid channel, i.e., in forced convec-
tion boiling configuration. Developing a knowledge base
on the subject requires an extensive experimental and
modeling work in microgravity. The present numerical
work, as a starting step, investigates the fundamental
fluid mechanics aspect of the problem.

Steady flow and temperature fields around a bubble
on a heated wall in the presence of bulk liquid cross flow
are numerically investigated, under microgravity con-
dition. Two convection mechanisms are identified,
namely thermocapillary convection and forced convec-
tion due to bulk liquid motion. It is shown that an in-
teraction between these convection mechanisms governs
the steady-state flow and temperature fields and shape of
the deformable bubble. At the front side of the bubble
facing the cross-flow, thermocapillary and forced con-
vection cause liquid motion in the same direction, while
at the downstream side they oppose each other, causing
a recirculating flow there. Effects of the cross-flow vel-
ocity, length of the heated wall before the bubble, and
temperature difference between the hot wall and the bulk
fluid are investigated. The present study also investigates
the role of these convection mechanisms in affecting wall
heat transfer near the bubble.

2. Mathematical formulation

Fig. 1 shows the schematic of a channel of height %
through which liquid of mean temperature 7;, flows at
an average velocity of U,,. For simplicity, the flow is
assumed to be hydrodynamically fully developed and
the velocity profile parabolic. One of the channel walls is
maintained at a temperature 7y (T, > T, Ty — Ty =
AT), while the other wall is insulated. Under micro-
gravity condition, in the absence of body forces, the
orientation of the heated wall (top or bottom heating) is
not important. A gas bubble is injected into the liquid
through a hole in the heated wall. Bulk liquid flow
through the channel is perpendicular to the bubble axis
(x =0), which is a cross-flow configuration w.r.t. the
bubble. Thus, the words channel flow and cross flow are
used interchangably in this article. The liquid flow and
AT create a thermal boundary layer which grows over
length L to a thickness dt at the front end of the bubble.
The thermal boundary layer in turn creates a tempera-
ture gradient d7'/ds along the tangential direction of the
bubble-liquid interface, leading to thermocapillary flow
on and around the interface. Physical properties of the
liquid, such as p,, yi;, cpe and k; are assumed to be con-
stant, except for ¢ which decreases linearly with tem-
perature [o(T) = o(Th) — |or|(T — Th), T» > Th]. Gas
properties, u, and ky, being much smaller than those of
the liquid, are neglected.

Flow around a bubble (spherical or part of a sphere)
due to combined forced and thermocapillary convection
poses a three-dimensional problem. An accurate nu-
merical modeling of a three-dimensional deformable free
surface (bubble) is highly complex and computationally
prohibitive. However, flow near the middle plane of the
bubble (plane cut along the direction of forced convec-
tion) is approximately two-dimensional. Thus, knowl-
edge about the important fluid mechanics aspect of this
problem can be gathered qualitatively from a two-di-
mensional model, which is much less computationally
involved. Therefore, in the present study we analyze a
two-dimensional problem. During the bubble formation

Insulated

Fig. 1. Schematic of bubble on a heated wall with cross-flowing
liquid.
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period in boiling or other gas injection processes in
liquid, bubble shape gradually changes from initially
hemispherical to part of an approximate sphere and fi-
nally to nearly spherical at the point of detachment. At
any instant during this formation time, the fundamental
qualitative mechanics of the flow around the bubble,
that is governed by the two modes of convection, re-
mains the same. Our focus is on understanding the basic
flow pattern and not on the details of the bubble shape
influence on the flow. Therefore, we investigate the
problem with the simplest geometry, i.e., a hemispherical
bubble. The semi-circular bubble, illustrated in Fig. 1, is
the two-dimensional equivalent of a hemispherical
shape. During the computation, the semi-circular bubble
is allowed to deform due to normal stress arising from
bulk liquid motion and thermocapillary flow. In the
presence of liquid cross-flow, the bubble tilts in the
downstream direction. For high cross-flow velocity,
angle between the wall and liquid meniscus at the
downstream end of the bubble may become equal to the
contact angle corresponding to the bubble, liquid and
solid. The bubble loses its pinning edge at the down-
stream end in such a situation and the contact line starts
to move along the wall [20]. Contact line behavior is a
complex phenomenon by itself and is beyond the scope
of this work. In this study, the cross-flow velocity ranges
considered are small so that the bubble deforms, but
remains pinned at the edge of the injection hole on the
heated wall.

The governing equations are written in a normalized
form, by non-dimensionalizing with respect to the fol-
lowing reference scales: length «, temperature
AT (= Ty — Tn), velocity Uyr and pressure pr. The di-
mensionless continuity, momentum and energy equa-
tions, respectively, are:

V-u =0, (1)

R,(u" - Vu*) = —Vp' + Vi, 2)
* ko 1 2 vk

(w-v)T _RUPrV T (3)

The governing equations are subject to the following
boundary conditions:

Hot wall u" =0, 7" =1. (4)
Insulated wall uw* =0, 0T*/0y" = 0. (5)
Bubble surface ) =0, (6)
Py = Pi = teUrer/(aprer) (Qu, /On") = 0/ (aprer”). (7)
WUrer (Ou} /On*) = do/dt” = arAT(dT™/dr"). (8)
oT* Jon* = 0. 9)

Inlet at x = —(L + a)
uf = u,/Up = 6[(v/h) = (v/R)"), uf=0.  (10)

Scaling of the shear stress balance equation (8) yields the
reference velocity Uy = o1AT/py,. Based on the refer-

ence velocity, the reference stream function ), in the
vicinity of bubble is written as otATa/p,. The surface
tension Reynolds number R, (= p,Ura/1,), in Eq. (2),
signifies the relative importance of inertia to viscous
forces generated by thermocapillary action. The product
of R, and Pr, commonly known as Marangoni number
Ma, represents a ratio of heat transported by thermo-
capillary convection to that by conduction. For fixed
liquid properties and bubble size, an increase in AT
implies an increase in R, and Ma and thus a stronger
thermocapillary convection. Forces arising from the
bulk liquid motion in the channel also play a crucial role
in the overall flow dynamics near the bubble. An im-
portant physical quantity characterizing this motion is
the local channel flow velocity Uy, at bubble height a,
written as 6Uy[(a/h) — (a/h)’] for the assumed para-
bolic velocity profile. Local cross-flow Reynolds number
Reioe (= pUioe a/1y,) shows relative significance of iner-
tia and viscous forces due to the bulk liquid motion near
the bubble. The ratio of the two characteristic velocities
Urer and Ul,., termed here as velocity ratio V (= arAT/
1, Uioc), can be considered to represent the relative im-
portance of two viscous forces — generated by thermo-
capillary action and bulk liquid motion. This
dimensionless parameter also signifies the ratio of heat
transported by thermocapillary and forced convection.
The tangential temperature gradient (d7/d¢) in Eq. (8),
which governs thermocapillary motion, depends on the
thickness of the thermal boundary layer created by wall
heating and bulk liquid motion. The thermal boundary
layer thickness is estimated at the front end corner of the
bubble, developed over length L as 1 ~ 5L/Re)*Pr'/?
[21]. Re; is the Reynolds number based on U, and L.
The ratio of thermal boundary layer thickness to bubble
radius (01/a) is another dimensionless parameter in-
volved in this problem. In summary, the flow and tem-
perature fields around the bubble are characterized by
four dimensionless parameters, R, Rej, Ot/a and Pr, or
in another form 7, Rejo., 61/a and Pr. We use the latter
group in this article as ¥ gives a direct measure of the
relative importance of thermocapillary and bulk liquid
motion. For a fixed Pr, the number of dimensionless
parameters reduces to ¥, Rey,. and dr/a. If the flow is
viscous dominated, Rej,. does not have any effect on the
overall flow field. In such a situation, only ¥ and ét/a
are sufficient to specify the transport fields.

To solve the problem numerically, a Spectral Element
Method (SEM) based model is developed using com-
putational fluid dynamics code NEKTON. NEKTON
has been validated and proved to be very successful in
modeling thermocapillary flow [22,23], coating flow [24],
free surface flow in crystal growth [25] and 2-D laminar
flow over a cylinder [26]. In SEM, the domain of interest
is divided into a large number of unstructured elements,
called spectral elements. Within each element the de-
pendent variables are expanded in terms of high order
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(4-14th) Legendre polynomials. The governing equa-
tions are written in variational form. Inserting Nth order
polynomial expansions of the dependent variables into
the variational form results in a set of discretized
algebraic equations, which are solved using conjugate
gradient method. Free surface tracking is decoupled
from the bulk flow analysis by using Arbitrary
Lagrangian Eulerian (ALE) method. The solution pro-
cess starts with solving the discretized governing equa-
tions, subject to kinematic constraint (Eq. (6)) and
tangential stress balance at the interface (Eq. (8)). The
normal stress balance equation (7) is then utilized to
determine the change in mesh co-ordinates on the free
surface and the new free surface position. The change in
the mesh co-ordinate is extended to the interior of the
computational domain using an elastostatic mesh solver,
thereby updating the geometry. Flow and temperature
fields are resolved for the updated geometry and the
procedure is repeated until the free surface geometry
solution converges.

3. Results and discussion

Computations are carried out for 5 cs silicone oil
(Pr=70). This liquid is chosen as we plan to exper-
imentally investigate the flow and temperature fields
around the bubble using the same liquid. The surface
tension of silicone oil is very low and is insensitive to
contaminants. Thus, unlike an air-water system [9],
thermocapillary flow in silicone oil is not affected by
surface impurities. The parametric ranges considered
are: R, =0-162, Ma=0-11340, Re,. =3.4-10.2,
V = 0-47.4 and é1/a = 0.9-1.5. Bubble size relative to
the channel height (a/h) is kept constant at 0.17. Com-
putations  performed for other a/h  ratios
(a/h = 0.06-0.4) show that the transport fields around
the bubble are independent of this parameter when all
other parameters are kept constant. However, if the a/h
ratio becomes close to 1, the flow pattern is drastically
altered as the top wall is close to the bubble. Such
geometric configuration is not considered in the present
article. The capillary number based on the reference
thermocapillary flow velocity (Ca = u,U,r/0) varies in
the range of 7 x 1073 to 0.09. This implies that the vis-
cous normal stress due to thermocapillary motion is
much less than the capillary stress and thus the bubble
shape is not significantly deformed due to thermocapil-
lary motion.

Before looking into the accuracy of the present nu-
merical scheme, it is important to know the computa-
tionally critical region near the bubble. Therefore, the
basic nature of the flow field is discussed before the grid
independence study. At first, steady flow around a
bubble is investigated for constant surface tension
(ot =0,R, =0) condition, for AT =5°C and

or/a = 1.5. Thus there is no thermocapillary flow, i.e.,
this represents a purely forced convection case. For three
different Rey,. conditions (3.4-10.2), the dimensionless
velocity along the bubble surface (V' = V/U) is
shown in Fig. 2. Dimensionless x location (x* = x/a) of
—1 represents the front end corner of the bubble facing
the cross-flow, while x* = +1 represents the downstream
end corner. Surface velocities for the three Re,. cases are
compared with that for a purely viscous case, i.e.,
without the advection terms (Rej,c — 0). V;© for the
purely viscous case is symmetric about the bubble center
axis (x = 0). Variation of V* between the viscous con-
dition and the other Rey,. curves near the top of the
bubble shows the effect of inertia due to bulk liquid
motion. At the downstream end (x* > 0.5), almost equal
v+ for the viscous and various Rey, curves suggests that
the flow is viscous dominated in this region. The viscous
effect is observed to be less at the front end (x* < —0.5),
compared to that at the downstream end. Slight
asymetry of V" between the front and downstream end
for various Rej,. curves indicates the presence of a very
weak wake effect at the downstream side. Due to the
expanding geometry near the downstream end, the flow
encounters an adverse pressure gradient in this region.
However, the bubble surface flow momentum can
overcome this gradient, ensuring that the bulk liquid
follows the surface, without any separation. This is ob-
served in the streamlines shown in Fig. 3(a) for the
Rej,. = 3.4 condition.

Fig. 3(b) illustrates the effect of thermocapillary
convection. Keeping AT, Uy, and dr same as in Fig.
3(a), surface tension along the bubble-liquid interface is
varied with temperature (o1 # 0,R, = 27) in Fig. 3(b).
Due to a temperature gradient along the interface, sur-
face tension is highest near the top of the bubble and
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Fig. 2. Variation of surface velocity for pure forced convection

cases (o7 = 0) at constant AT = 5°C (R,,V = 0). Comparison

between Rejo. = 3.4,6.8 and 10.2 (corresponding dr/a values

are 1.5, 1.1 and 0.9) cases with purely viscous flow condition.



3900 A. Bhunia, Y. Kamotani | International Journal of Heat and Mass Transfer 44 (2001) 3895-3905

(b)

Fig. 3. Streamlines of steady flow field around a bubble for U, = 8.3 x 1073 m/s (Rejoc = 3.4),01/a = 1.5 and AT = 5°C. (a)
or=0,R, =0,V =0, (b) o1 =0.0587 x 10> N/m K, R, =27,V =7.9.

lowest near the heated wall. This surface tension varia-
tion generates thermocapillary flow along the bubble
surface, away from the hot wall towards the bulk liquid.
At the upstream side of the bubble facing the cross flow,
the bulk liquid motion and the thermocapillary effect
create a free surface flow in the same direction. Thus
flow near the front end of the bubble surface is governed
by cooperating forced and thermocapillary convection.
On the other hand, near the downstream end, the sur-
face velocity due to bulk liquid flow and that due to
thermocapillary flow are in opposite directions. The
latter, being stronger among the two competing mech-
anisms, creates a reverse flow along the surface. The
point on the bubble surface where the forward and re-
verse flow meet is termed as the stagnation point. The
forward moving bulk liquid follows the bubble surface
up to the stagnation point and separates thereafter. At
the downstream end, as liquid moves up along the
bubble surface due to thermocapillary effect, the sur-
rounding liquid is pulled towards the hot corner to
maintain continuity of liquid. Thus a recirculation cell is
generated.

In order to resolve the flow and temperature fields
accurately, a non-uniform spectral element grid is
chosen with more number of elements near the bubble
surface, especially in the recirculation region. Mesh de-
pendence studies are carried out for Re. = 3.4,
R, =162 (Ma= 11340,V =47.4) and é1/a=1.5,
which represents the extreme condition in the present
work. The most important parameters to judge grid in-
dependence are: minimum stream function of the recir-
culation cell (V). = Wmin/Wrer)» Minimum temperature
on the bubble surface (77, = (Timin — Tm)/AT), maxi-
mum bubble surface velocity in the direction of bulk
liquid flow (V,.x = Vemax/User), maximum reverse flow

velocity on the bubble surface, which is minimum sur-
face velocity as it is in the negative x direction
(Vi min = Vomin/Urer), the maximum cross-flow velocity
within the channel (U], .. = Ucmax/Urr) and the x- and
y-location of the stagnation point on the bubble surface
X7, Y =X, Y/a). Computations are performed for
three different spectral element meshes with 142, 182 and
202 elements, each having 5th order polynomial expan-
sion of the dependent variables. Comparison of the
above parameters for these three meshes are shown in
Table 1. Comparing the values in Table 1, the 182 el-
ement grid is chosen for all the computations.

Figs. 4(a) and (b) show the streamlines and isotherms
for Rec =3.4,0r/a=15 and R, =81 conditions.
Keeping U, same as in Fig. 3, AT is tripled in this figure
to study the effect of wall heating. A comparison of Figs.
3(b) and 4(a) suggests that thermocapillary flow be-
comes stronger with an increasing temperature differ-
ence. At the front side of the bubble, thermocapillary
action accelerates liquid flow along the bubble surface.
To maintain continuity of liquid, the relatively colder
bulk liquid is drawn towards the hot corner. This causes
a slight bending of the near wall streamlines towards the
hot corner (Fig. 4(a)) and clustering of isotherms in the
region (Fig. 4(b)). At the downstream side, the recircu-
lating flow penetrates deeper into the bulk fluid along
the bubble surface and covers a wider area along the hot
wall. Strengthening of the recirculating flow with in-
creasing AT pushes the stagnation point on the bubble
surface upstream. In the absence of cross-flow liquid
velocity, thermocapillary flow is shown to be symmetric
about the y axis, i.e., the stagnation point is located at
x =0 [8-15]. One may expect that with the additional
motion of the cross-flowing liquid, thermocapillary ef-
fect will push the stagnation point towards the down-

Table 1

Grid independence for flow conditions, Rej,. = 3.4,01/a = 1.5 and R, = 162*
No. Of elements l//:nin T:min stmin V:max Uc*.,max /Y: Y:
142 —-0.0230 0.5249 -0.0384 0.0737 0.0419 -0.8012 0.4170
182 -0.0229 0.5783 -0.0372 0.0781 0.0418 —-0.8414 0.3663
202 -0.0229 0.5772 -0.0373 0.0784 0.0418 —-0.8418 0.3658

* Corresponding V = 47.4.
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(b)

Fig. 4. (a) Streamlines and (b) isotherms for Rej,. = 3.4,1/a = 1.5 and R, = 81. Corresponding V' = 23.7.

stream end of the bubble. However, Fig. 4(a) suggests
that at a high AT condition, the recirculation cell can
have enough strength to cross over the line of symmetry
towards the front end. An explanation of this phenom-
enon will be given later when we investigate the effect of
AT on the surface temperature and velocity. The fact
that the recirculating cell brings hot fluid up along the
bubble surface is manifested by the upward bending of
the isotherms at the downstream end, as observed in Fig.
4(b).

Variations of the dimensionless temperature 7, and
velocity V" along the bubble surface are shown in Figs.
5(a) and (b), respectively, for three different sets of AT
conditions. Rej,. is maintained constant at 3.4 and the
Or/a ratio at 1.5. In order to understand the role of
thermocapillary convection with increasing AT, the base
condition is taken without thermocapillarity (R, = 0, as
or = 0,AT = 5°C). Therefore, the only heat transfer
mechanism in this case is forced convection. Bulk liquid
motion tends to cool the surface, leading to a gradual
drop in temperature from the front end hot corner along
the bubble, as observed in Fig. 5(a). The other three
curves in Fig. 5 represent non-zero ot cases, giving rise
to thermocapillary flow. Thermocapillary effect domi-

%

+

A

nates near the two corners, creating sharp temperature
and velocity gradients there. At the front side, as ther-
mocapillarity pulls liquid up along the surface from the
hot corner, the surrounding colder liquid flows towards
the corner to maintain continuity. This makes the ther-
mal boundary layer thinner in the corner region, leading
to a steeper temperature gradient with increasing R,, as
shown in Fig. 5(a). In this region, the presence of ther-
mocapillary effect brings in additional surface velocity in
the same direction as bulk liquid cross-flow. As a result,
with an increasing R,, a significant enhancement of
surface velocity is observed in Fig. 5(b). Away from the
front end corner, cooperating forced and thermocapil-
lary flow governs the temperature profile and the former
becomes increasingly important up along the surface.
This leads to a gradual drop in surface temperature to
the minimum point. Negative surface velocity in Fig.
5(b) underlines the presence of a reverse flow caused by
thermocapillary convection from the downstream end
hot corner. Thermocapillary effect dominates the tem-
perature profile in this region, where the surface tem-
perature varies from the minimum point to the wall
temperature at the downstream end corner. The transi-
tion from positive to negative surface velocity represents
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the stagnation point, where forward moving bulk liquid
separates from the bubble surface. The stagnation point
is observed to move upstream with increasing AT (R,).
For an explanation of this phenomenon, we consider the
surface temperature profile for R, = 27 in Fig. 5(a).
Surface temperature for A7 =5°C (R, =27) is
minimum at x* ~ 0.3, which corresponds to the stagna-
tion point in Fig. 5(b). As discussed earlier, just up-
stream (left) of this point, the temperature profile is
governed by cooperating thermocapillary and forced
convection. On the other hand, a sharp rise in temper-
ature downstream (right) of this point marks the tran-
sition from the combined convection region to the
thermocapillarity driven recirculation region, where the
average liquid temperature is much higher than the bulk
liquid. Keeping U (Reioc) constant, if AT (R,) is
slightly increased from this point, thermocapillary
driving force increases at both hot corners. At the front
end corner, the temperature gradient becomes steeper
and as a result, temperature along the front side of the
bubble surface is lowered (Fig. 5(a)). In contrast, the
average liquid temperature at the downstream side of
the bubble goes up with AT. Lowering of surface tem-
perature at the left side and its increase at the right side
of the stagnation point lead to an increased temperature
gradient in that region. This enhances the thermocapil-
lary effect, which pushes the stagnation point upstream.
At higher AT, the stagnation point goes even beyond the
point of symmetry (x = 0), towards the front end corner.
How the interaction between thermocapillary and
forced convection dictates the stagnation point is shown
in Fig. 6. The dimensionless stagnation point
(X; = X;/a), measured from the origin of the co-ordi-
nate system, is plotted against 7. There is no separation
of flow from the bubble surface when surface tension is
constant (o1, R,, V = 0), or the stagnation point is at the

1.0 ‘ ‘ ‘ : .
D
osfh Rejpe =34, 8p/a= 1.5
0.6l Sea- 34,11
% @ S e 6.8, 1.1
Xoo04r N\,
& N —— 102,09
3 0.2+ \\\
(a9 NN
= or NN
2 NS
g -02f
o0 N ~
S -04f ~ s
m \\ \\
06 f STl
08 el Teeo
-1.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 15 20 25 30 35 40 45 50

Velocity Ratio, \

Fig. 6. Dimensionless separation point vs. velocity ratio for

various

local

cross-flow

Reynolds number and thermal

boundary layer thickness conditions.

A. Bhunia, Y. Kamotani | International Journal of Heat and Mass Transfer 44 (2001) 3895-3905

downstream end hot corner (X; = 1). Along any Rej,.
curve shown in Fig. 6, an increase in ¥ implies a rise in
AT, i.e., for fixed forced convection there is an increase
in thermocapillary effect. A decreasing trend of X" with
V for all values of Rey, in Fig. 6 shows that the stag-
nation point is pushed upstream with increasing ther-
mocapillary effect, as discussed above.

Effects of dr/a and Rej. on the stagnation point are
also investigated in Fig. 6. Keeping U, same as in the
Rejoc = 3.4,01/a = 1.5 case, the length of the heated wall
before the front end corner of the bubble (L) is halved
(Reoc = 3.4,071/a = 1.1). Comparing the two curves in
Fig. 6, it is observed that at any ¥ (same Uy, and AT
conditions), the stagnation point is pushed further up-
stream for a thinner thermal boundary layer thickness.
As the thermal boundary layer becomes thinner in the
latter case, temperature at the front side of the bubble is
lowered and the gradient at the front corner gets steeper,
as seen in Fig. 5(a). On the other hand, the temperature
profile at the downstream side remains unaltered by a
change of dr. The increased temperature difference be-
tween the front and downstream side enhances reverse
thermocapillary flow, thereby pushing the stagnation
point upstream. Keeping Jr/a constant, Rej,. is
now doubled to investigate the role of inertia due to
cross-flow velocity. A comparison of the Rej,. = 3.4,
or/a=1.1 and Rey,. = 6.8,0r/a = 1.1 curves suggests
that at any 7 condition, the stagnation point is pushed
downstream with increasing Rej,.. At any fixed 7,
moving from the Re,. =3.4 curve to 6.8 curve is
equivalent to doubling of both AT and Uj,. Increasing
AT tends to push the stagnation point upstream. On the
other hand, surface velocity and forces in the direction
of bulk liquid motion increase with U, (Fig. 2), which
tends to push the stagnation point downstream. Of the
competing effects, forces due to U, play a stronger role,
thereby moving the stagnation point in its direction.
Effects of these dimensionless parameters are further
observed by a comparison of the Rej,. = 3.4,01/a = 1.5,
Rejoc = 6.8,01/a=1.1, and Rey,, =10.2,01/a=0.9
curves. Length L is kept constant in these computations.
At any ¥, moving from the Rey,. = 3.4,5r/a = 1.5 curve
to the Rej,c = 6.8,01/a =1.1 curve implies doubling
both AT and U, and thus reduction of 1 /a for fixed L.
As observed earlier, increased AT and reduced dt/a both
enhance thermocapillary effect and tend to push the
stagnation point upstream. The inertia and viscous
forces due to U, do the reverse. In the present ranges
considered, the change in the two opposing effects are
almost equal, thereby keeping the stagnation point
nearly constant.

It is further observed in Fig. 6 that for the Rej,. = 3.4
cases, X saturates to a nearly constant value (~ —0.8) at
a high ¥ condition. In the absence of liquid cross-flow,
i.e., in an initially stagnant liquid case, thermocapillary
convection alone generates two symmetric recirculation
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cells at the two sides of bubble axis (x = 0) [8-15]. The
stagnation point is located on the axis (X = 0). The
present problem approaches the initially stagnant liquid
case when AT is very high (mathematically AT,V — oo)
or when Uy, is very small (U — 0,7 — o). Due to
limitations in computational grid and memory, the V
condition in the present problem is restricted to a
maximum value of 47.4. For the same Re,,. = 3.4 con-
dition, if ¥ could be increased well above the maximum
value of 47.4 shown here, another recirculation cell will
appear at the front end of the bubble. The beginning of
this two cell (at the front and downstream end) flow
pattern is observed in the streamlines corresponding to
the V =443 (Repc =3.4,61/a=15 and R, =151)
condition, shown in Fig. 7. A strong suction effect causes
the streamlines to bend towards the front end corner and
thus the bulk liquid flow pattern is significantly altered.
For AT conditions higher than that shown in Fig. 7, flow
at the front end is expected to form a closed recircula-
tion loop. Although the strength of the front end cell is
less compared to that at the downstream end, it in-
creases the temperature in that region due to recircula-
tion. Thereby thermocapillary flow at the front end
becomes stronger and consequently the stagnation point
is slowly pushed back in the downstream direction. At
very high V' conditions (V¥ — o00), strength of the two
recirculation cells becomes almost equal and X reaches
0. The saturation for Rej,. = 3.4 cases observed in Fig. 6
is actually the crest region of a higher ¥ range plot.
Along with the stagnation point, another parameter
that expresses the strength of the recirculation cell is its
length along the heated wall (Xg). Xz (in dimensionless
form X; = Xg/a), measured from the downstream end
hot corner, is plotted against ¥ in Fig. 8. For a pure
forced convection case (or1,R,, V = 0), there is no re-
circulation cell, i.e., X = 0. Along any Rej,, curve, with
an increase in AT(V) the thermocapillary flow gets
stronger. Consequently the downstream end recircula-
tion cell grows in size and its core region expands deeper
into the channel. Thereby, the point at which the sep-
arated bulk liquid reattaches to the wall is pushed fur-
ther away from the downstream end corner. This
explains the rapidly increasing trend of X with ¥ for all
the Rey,. curves. It is further observed that the growth

Fig. 7. Streamlines of flow around a bubble for
Rejo. = 3.4,01/a = 1.5 and R, = 151. Corresponding V = 44.3.
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rate of X is reduced at high V. For Rey,. = 3.4 cases X;;
eventually reaches a near constant value of beyond
V ~ 40. A comparison of Figs. 4(a) and 7 shows that at
high 7, as the stagnation point crosses beyond the line of
symmetry (x = 0) towards front end, expansion of the
recirculation cell core slows down. As a result, the length
of the recirculation cell does not grow significantly with V.

Effects of dt/a and Rey,. are further investigated in
Fig. 8. Keeping U, same as in Rey,. = 3.4,0r/a = 1.5, L
is halved so that dr/a is reduced to 1.1. As discussed
earlier, thermocapillary flow at the downstream side
gains strength with reduced Jr/a. Consequently the re-
circulatory flow becomes stronger and the cell increases
in size. Thus X} is always higher for the lower dr/a case.
In the next step, Reyo is doubled from 3.4 to 6.8, keeping
or/a fixed at 1.1. At a fixed ¥, both AT and U, are
doubled between these two curves. As a result, the mo-
mentum of both the forward (bulk liquid) and reverse
(thermocapillary) flow increase near the stagnation
point. Consequently, the momenta of the detached bulk
liquid motion and the return flow of the recirculation
cell increase. This causes the bulk liquid to reattach to
the wall at a distance further away from the downstream
end corner. The increasing trend of X3 from Rej,. = 3.4
to 6.8 and 10.2 at any fixed V is thus explained.

The effect of thermocapillary flow on the local heat
transfer coefficient at the wall is investigated in Fig. 9. x
location along the heated wall and the local heat transfer
coeflicient (4,) at that location are non-dimensionalized
w.r.t. a.

ar
oy

h.a a
Nug =22
ST T (T = T

(11)

V=0

There is no heat transfer through the bubble surface,
which corresponds to the region —1 <x* <1 in Fig. 9.
Therefore, there are two branches in the Nusselt number
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Fig. 9. Variation of local wall heat transfer coefficient for dif-
ferent AT conditions at a fixed local cross-flow velocity,
Rejoe = 3.4. Zero or case: AT =10°C (R, =0). Non-zero or
cases: AT =10°C (R, = 54) and AT = 20°C (R, = 108). Cor-
responding ¥ = 0,15.8 and 31.6.

plot. At first the bubble is treated as free surface without
any thermocapillary effect (o1 = 0,AT = 10°C,R, = 0).
At the upstream end, as the thermal boundary layer
grows thicker with distance, heat transfer rate reduces,
thereby showing a gradual decrease in the Nusselt
number. After the insulated bubble surface, at the
downstream end, a thermal boundary layer starts
growing again from x* = 1. As a result, the local heat
transfer coefficient is higher in the starting region and
slowly decreases with distance to a near constant value.
The other two curves in Fig. 9, R, = 54 (AT = 10°C)
and R, = 108 (AT = 20°C), represent non-zero o cases.
It is observed that at x* ~ —3 and x* ~ 4, Nu, is ap-
proximately the same for all the cases. Thus —3 <x* <4
signifies the zone of influence of thermocapillary flow in
terms of wall heat transfer. Within this distance range, it
is observed that thermocapillary flow significantly alters
the local wall heat transfer coefficient, especially at the
upstream end. Thermocapillarity-induced suction effect
at the front end of the bubble causes colder bulk liquid
to flow towards the corner. Thus the thermal boundary
layer becomes thinner, leading to enhanced heat transfer
from the wall in this region. This explains the sharp rise
in Nu, curve near x* = —1 for the R, = 54 and 108 cases,
as compared to R, = 0. In contrast, at the downstream
end thermocapillary effect reduces the heat transfer rate
by a small amount. The recirculatory motion tends to
increase the average liquid temperature at the down-
stream end by mixing of fluid, thereby reducing heat
transfer from the wall.

4. Conclusion

Liquid motion on and near the surface of a gas
bubble placed on a heated wall of a flowing liquid
channel is investigated under microgravity condition. A
two-dimensional numerical model is developed, based on
spectral element method. It is shown that flow and
temperature fields are governed by an interaction be-
tween thermocapillary convection arising at the bubble
surface and forced convection due to bulk liquid flow. At
the front end of the bubble facing the channel(cross)
flow, two convection mechanisms assist each other, cre-
ating liquid motion along the surface away from the hot
wall towards the top of the bubble. At the downstream
end, thermocapillary action creates surface flow opposite
to that created by bulk liquid motion. As a result, the
forward moving liquid flow stagnates on the surface and
separates thereafter. This sets in a recirculatory motion
at the downstream end, strength of which is character-
ized by its length along the downstream side heated wall
and location of the stagnation point on bubble surface.
Channel flow velocity, temperature difference between
the heated wall and bulk liquid and thermal boundary
layer thickness (developed over the length of the heated
wall before bubble) are identified to be the most impor-
tant physical parameters. Increased temperature differ-
ence and thinner thermal boundary layer enhance
thermocapillary effect and strengthen the recirculation
cell. Consequently, the length of the recirculation cell
increases and the stagnation point on bubble surface is
pushed upstream towards the front end. Cross-flowing
bulk liquid, on the other hand, pushes the stagnation
point downstream and squeezes the cell in size. For fixed
liquid properties, ratio of the cross-flowing bulk liquid
inertia to viscous forces (local Reynolds number at
bubble height), ratio of viscous forces due to thermo-
capillary motion and bulk liquid flow (velocity ratio) and
ratio of thermal boundary layer thickness to bubble ra-
dius are observed to be important dimensionless pa-
rameters. It is further shown that heat transfer from the
wall near the upstream end of the bubble is significantly
increased due to thermocapillary effect, whereas a slight
reduction takes place at the downstream end.

It is observed that wall heating significantly alters the
flow field around the bubble. Thus the forces acting on
the bubble, which govern its detachment from the wall,
are also changed due to the presence of thermocapillary
flow. This has an important implication in two-phase
flow in space applications. It is proposed that a combi-
nation of heating and bulk liquid cross-flow can be
utilized to precisely control bubble formation, size and
frequency in the microgravity environment of space.
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